Keyframe-Based Visual-Inertial Online SLAM with Relocalization

Anton Kasyanov, Francis Engelmann, Jörg Stückler, Bastian Leibe
ArXiv e-prints

Complementing images with inertial measurements has become one of the most popular approaches to achieve highly accurate and robust real-time camera pose tracking. In this paper, we present a keyframe-based approach to visual-inertial simultaneous localization and mapping (SLAM) for monocular and stereo cameras. Our method is based on a real-time capable visual-inertial odometry method that provides locally consistent trajectory and map estimates. We achieve global consistency in the estimate through online loop-closing and non-linear optimization. Furthermore, our approach supports relocalization in a map that has been previously obtained and allows for continued SLAM operation. We evaluate our approach in terms of accuracy, relocalization capability and run-time efficiency on public benchmark datasets and on newly recorded sequences. We demonstrate state-of-the-art performance of our approach towards a visual-inertial odometry method in recovering the trajectory of the camera.

» Show BibTeX
@article{Kasyanov2017_VISLAM, title={{Keyframe-Based Visual-Inertial Online SLAM with Relocalization}}, author={Anton Kasyanov andFrancis Engelmann and J\"org St\"uckler and Bastian Leibe}, journal={ArXiv e-rpints:1702.02175}, year={2017} }



Disclaimer Home Visual Computing institute RWTH Aachen University